The Craig-Bampton Method

FEMCI Presentation Scott Gordon May 6, 1999

Topics:

- 1) Background
- 2) Theory
- 3) Creating a C-B Model
- 4) Load Transformation Matrices
- 5) Verification

Appendix: Sample FLAME scripts

Background

Who is Craig Bampton?

"Coupling of Substructures for Dynamic Analysis"

Roy R. Craig Jr. and Mervyn C. C. Bampton

AIAA Journal

Vol. 6, No. 7, July 1968

What is the Craig-Bampton Method?

- Method for reducing the size of a finite element model.
- Combines motion of boundary points with modes of the structure assuming the boundary points are held fixed
- Similar to other reduction schemes

•
$$\{U\} = [\phi]\{Ua\}$$
 Where $[\phi] = -[Koo]-1[Koa]$ Guyan Reduction $\{Ua\} = A\text{-set points}$

•
$$\{U\} = [\varphi]\{q\}$$
 Where $[\varphi] = Mode$ Shapes Modal Decoupling $\{q\} = Modal$ dof's

•
$$\{U\} = [\phi]\{x_{cb}\}$$
 Where $[\phi] = C$ -B Transformation C-B Method $\{x_{cb}\} = C$ -B Dof's = boundary + modes

Background (Cont)

- Why is the C-B Method Used?
 - Allows problem size to be reduced
 - Accounts for both mass and stiffness (unlike Guyan reduction)
 - Problem size defined by frequency range
 - Allows for different boundary conditions at interface (unlike modal decoupling)
 - Example

• Spacecraft Model: 10,000 DOF's

 $K,M = 10,000 \times 10,000$

10 Modes up to 50 Hz

Single Boundary grid at interface

• C-B Reduction: 16 DOF (6 i/f + 10 Modes)

to 50 Hz $K,M = 16 \times 16$

Craig-Bampton Theory

Equation of motion (ignoring damping)

$$[M_{AA}]\{\ddot{u}_A\} + [K_{AA}]\{u_A\} = \{F(t)\}$$
 (1)

• The Craig-Bampton transform is defined as:

$$\{u_{A}\} = \begin{cases} u_{b} \\ u_{L} \end{cases} = \begin{bmatrix} I & 0 \\ \mathbf{f}_{R} & \mathbf{f}_{L} \end{bmatrix} \begin{cases} u_{b} \\ q \end{cases}$$
Where
$$C-B \text{ Transformation Matrix} = \phi_{cb}$$

 $u_{_{b}}$ = boundary dof's

 u_{L} = internal (leftover) dof's

 f_{R} = Rigid body vector

 f_{i} = Fixed base modeshapes

q = modal dof's

Craig-Bampton Theory (Cont.)

• Combining equations (1) & (2) and pre-multiplying by $[\phi_{cb}]^T$

$$\mathbf{f}_{cb}^{\mathsf{r}}[M_{AA}]\mathbf{f}_{cb}^{\mathsf{r}}\begin{bmatrix}\ddot{u}_{b}\\\ddot{q}\end{bmatrix} + \mathbf{f}_{cb}^{\mathsf{r}}[K_{AA}]\mathbf{f}_{cb}^{\mathsf{r}}\begin{bmatrix}u_{b}\\q\end{bmatrix} = \mathbf{f}_{cb}^{\mathsf{r}}\begin{bmatrix}F_{b}\\F_{L}\end{bmatrix}$$
(3)

• Define the C-B mass and stiffness matrices as

$$\begin{bmatrix} \boldsymbol{M}_{cb} \end{bmatrix} = \boldsymbol{f}_{cb}^{T} \begin{bmatrix} \boldsymbol{M}_{AA} \end{bmatrix} \boldsymbol{f}_{cb} = \begin{bmatrix} \boldsymbol{M}_{bb} & \boldsymbol{M}_{bq} \\ \boldsymbol{M}_{qb} & \boldsymbol{M}_{qq} \end{bmatrix}$$
(4)

$$[K_{cb}] = \mathbf{f}_{cb}^{r}[K_{AA}]\mathbf{f}_{cb} = \begin{bmatrix} K_{bb} & 0\\ 0 & K_{aa} \end{bmatrix}$$
(5)

• Write equation (3) using equations (4) & (5)

$$\begin{bmatrix}
M_{bb} & M_{bq} \\
M_{qb} & M_{qq}
\end{bmatrix}
\begin{bmatrix}
\ddot{u}_{b} \\
\ddot{q}
\end{bmatrix} + \begin{bmatrix}
K_{bb} & 0 \\
0 & K_{qq}
\end{bmatrix}
\begin{bmatrix}
u_{b} \\
q
\end{bmatrix} = \begin{bmatrix}
F_{b} \\
0
\end{bmatrix}$$
(6)

where input forces are applied at the boundary only $(F_L = 0)$

Craig-Bampton Theory (Cont.)

- Important properties of the C-B mass and stiffness matrices
 - Mbb = Bounday mass matrix => total mass properties translated to the boundary points $[M^{cg}] = \mathbf{f}_{pp}^{cg^T} [M_{pp}] \mathbf{f}_{pp}^{cg} \qquad (7)$
 - Kbb = Interface stiffness matrix => stiffness associated with displacing one boundary dof while other are held fixed
 - If the boundary point is a single grid (i.e. non-redundant) then

$$\mathbf{K}_{\mathbf{bb}} = \mathbf{0}$$

If the mode shapes have been mass normalized (typically they are) then

$$K_{qq} = \begin{bmatrix} \backslash & 0 \\ I & \\ 0 & \backslash \end{bmatrix} \qquad I_i = k_i / m_i = \mathbf{w}_i^2$$

$$M_{qq} = \begin{bmatrix} \backslash & 0 \\ I & \\ 0 & \backslash \end{bmatrix}$$
(8)

Craig-Bampton Theory (Cont.)

• We can finally write the dynamic equation of motion (including damping) using the C-B transform as

$$\begin{bmatrix} M_{bb} & M_{bq} \\ M_{qb} & I \end{bmatrix} \begin{bmatrix} \ddot{u}_{b} \\ \ddot{q} \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 2\mathbf{z}\mathbf{w} \end{bmatrix} \begin{bmatrix} \dot{u}_{b} \\ \dot{q} \end{bmatrix} + \begin{bmatrix} K_{bb} & 0 \\ 0 & \mathbf{w}^{2} \end{bmatrix} \begin{bmatrix} u_{b} \\ q \end{bmatrix} = \begin{bmatrix} F_{b} \\ 0 \end{bmatrix}$$
(9)

where $2\zeta\omega = \text{Modal damping}$ ($\zeta = \% \text{critical}$)

- Summary of C-B Theory
 - C-B Mass and Stiffness Matrices fully define system
 - Dynamics problem solved using CB dof's
 - C-B boundary dofs provide location to apply BC's & Forces or to couple with another structure
 - CB transform is used to calculate physical responses from CB responses

How to Create a C-B Model

```
assign USER1=gi_v2_cb.kmnp,NEW,USE=OUTPUT4,TYPE=BINARY,reallocate ←1) CB Output File
ID GLAST, inst
SOL 3
                         ←2) Normal Modes Solution
APP DISP
TIME 5
INCLUDE '/home/sag721/dmap/uai/cb_v118b.dmp'
                                                 ←3) C-B DMAP
CEND
TITLE = GLAST SI Instrument
SUBTITLE = Craig-Bampton Run
ECHO = NONE
METHOD = 1
$SPC = 998
$POST SDRC
DISP(NOPRINT)
$SPCFORCES(NOPRINT)=ALL
$MPCFORCES(NOPRINT)=ALL
AUTOSPC = YES
BEGIN BULK
PARAM, GRDPNT, 0
PARAM, WTMASS, 2.59e-3
PARAM, USETPRT, 0
                         ←4) Print G-set & R-set internal order
EIGRL,1,-0.1,70.0
                         ←5) Define frequency range
$ Instrument Interface at S/C
SUPORT
            800290
                        123456
                                     ←6) Boundary Defined on suport cards
SUPORT
            800291
                        123456
                                           8 boundary points x 6 dof's
SUPORT
            800292
                        123456
                                           = 48 physical boundary points
SUPORT
            800293
                        123456
SUPORT
            800294
                        123456
SUPORT
            800295
                        123456
SUPORT
            800296
                        123456
SUPORT
            800297
                        123456
INCLUDE 'glast_inst_v2.blk'
                               ←7) Don't forget the rest of your bulk data
ENDDATA
```

How to Create a C-B Model (Cont.)

- What is created?
 - file (.kmnp) which contains CB stiffness and mass matrices (k,m),
 net CG ltm (n), and the CB transformation matrix (phig)
 - kmnp file is in NASTRAN binary output4 format
 - K&M size is [CB dofs (boundary + modal) x CB dofs]
 - phig size is [G-set rows x CB dofs]
 - Net CG LTM recovers CG accelerations and I/F Forces, Size is [6+boundary dofs x CB dofs]
- How do you use this?
 - Solve dynamics problem for CB dof response using the K & M matrices
 - Transform CB responses using phig to get physical responses

Load Transformation Matrices (LTMs)

- LTM is a generic term referring to the matrix used to transform from CB dofs to physical dofs (also referred to at OTMs, ATMs, DTMs...)
- In its simplest form, the LTM is simply the phig matrix

$$\left\{ \ddot{U}_{\scriptscriptstyle G} \right\} = \left[\mathbf{f}_{\scriptscriptstyle cb} \right] \left\{ \begin{matrix} \ddot{u}_{\scriptscriptstyle b} \\ \ddot{q} \end{matrix} \right\} \tag{10}$$

(Only the rows corresponding to the physical dofs of interest are needed)

- There are other useful LTMs that can be created
 - I/F forces
 - Net CG accelerations
 - Stress & force LTMs

LTM's (Cont.)

• I/F Force LTM (created by CB dmap)

I/F Force =
$$\begin{bmatrix} M_{bb} & M_{bq} & K_{bb} \end{bmatrix} \begin{bmatrix} \ddot{u}_{b} \\ q \\ u_{b} \end{bmatrix}$$
 (11)

(If boundary is non-redundant, then Kbb=0)

Net CG LTM (created by CB dmap)

Net CG Accel =
$$([\boldsymbol{f}_{rb}^{cg}]^T [\boldsymbol{M}_{bb}] [\boldsymbol{f}_{rb}^{cg}]^T [\boldsymbol{M}_{bb} \quad \boldsymbol{M}_{bq} \quad \boldsymbol{K}_{bb}] \begin{bmatrix} \ddot{\boldsymbol{x}}_b \\ \ddot{q} \\ \boldsymbol{x}_b \end{bmatrix}$$
 (12)

where $([\mathbf{f}_{pb}^{cg}]^T[M_{pb}][\mathbf{f}_{pb}^{cg}]) = \text{mass matrix about cg } (6x6)$ $[\mathbf{f}_{th}^{ca}]$ = rigid body transform from I/F to CG (bdof x6)

LTM's (Cont.)

PHIZ LTM

- Allows physical displacements to be calculated from CB accelerations $\{X_{c}\} = [PHIZ] \begin{Bmatrix} \ddot{x}_{b} \\ \ddot{q} \end{Bmatrix}$ (13)
- Same as modal acceleration approach in NASTRAN
- Useful in calculating relative displacements between DOF's
- Also used to calculate stresses and forces which are a function of displacements
- Calculated from C-B dmap using => param,phzout,1

LTM's (Cont.)

- LTM's can be created using FLAME, MATLAB or using DMAP
- LTM's can (and usually do) contain multiple types of responses $\lceil Net CG \rceil$

responses
$$LTM = \begin{bmatrix} [Net CG] \\ [I/F Force] \\ [Accel] \\ [Element] \\ Forces \end{bmatrix}$$
(14)

• LTM's can be used to recover responses for nested C-B models $\{X^{cb1}\} = [\mathbf{f}_{cb1}][\mathbf{f}_{cb0}^{cb1}] \begin{bmatrix} \ddot{x}_b^{cb0} \\ \ddot{a}^{cb0} \end{bmatrix}$ (15)

where f_{cb0}^{cb1} = row partition of the CB1 Dofs from the CB0 PHIG Matrix

 Creating LTMs - See appendix for a sample FLAME script for creating an LTM

Checking CB Models & LTM's

- C-B Models and LTMs should be verified to make sure that they have been created correctly (especially for complicated LTM's or nested C-B models)
- CB Mass and stiffness matrices can be checked by computing free-free and fixed-base modes
- CB boundary Mass matrix can be transformed to CG and compared with NASTRAN GPWG

Checking C-B Models and LTM's (Cont.)

LTMS can be checked by applying unit acceleration at the boundary

$$\{X_{resp}\} = \begin{bmatrix} b & q \\ q & q \end{bmatrix} \begin{cases} \mathbf{f}_{RB}^{b} \\ 0 \end{bmatrix}$$
 (16)
where $\mathbf{f}_{RB}^{b} = \text{Boundary rigid body vector (b x 6)}$

- Each response column represents acceleration in a single direction
- Accelerations should be in correct directions
- Forces should recover weight or correct moments
- Unit acceleration applied to PHIZ can be checked by gravity run with physical model and comparing displacements
- See appendix for sample FLAME scripts to check a CB model and LTM

Appendix Sample FLAME Scripts

cb_chk.fla ==> Checking CB K&M Matrices

etm_ltma.fla ==> LTM creation

etm_chk.fla ==> Checking an LTM